OPTIMAL BINARY SEARCH TREES

- A Binary Search Tree is one of the most important data structures which contain a set of elements with the operations of searching, insertion, and deletion.
- An Optimal Binary Search Tree is the one for which the average number of comparisons in a search is the smallest possible, if the probability of searching each elements is given.
- Consider four keys A, B, C, and D to be searched for with probabilities $0.1,0.2,0.4$, and 0.3 , respectively.
- The below figure depicts two out of 14 possible binary search trees containing these keys.

- The average number of comparisons in a successful search in the first of these trees is

$$
0.1 \cdot 1+0.2 \cdot 2+0.4 \cdot 3+0.3 \cdot 4=2.9
$$

and for the second one it is

$$
0.1 .2+0.2 .1+0.4 .2+0.3 .3=2.1
$$

- Neither of these two trees is, in fact, optimal.
- The total number of binary search trees with n keys is equal to the nth Catalan number,

$$
c(n)=\frac{1}{n+1}\binom{2 n}{n} \quad \text { for } n>0, \quad c(0)=1
$$

- Let $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$ be distinct keys ordered from the smallest to the largest and let $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$ be the probabilities of searching for them.
- Let $\mathrm{C}(\mathrm{i}, \mathrm{j})$ be the smallest average number of comparisons made in a successful search in a binary search tree $\mathrm{T}_{\mathrm{i}}{ }^{\mathrm{j}}$.
- Suppose the root contains key a_{k}, the left subtree T_{i}^{k-1} contains keys a_{i}, \ldots, a_{k-1} optimally arranged, and the right subtree T_{j}^{k+1} contains keys a_{k+1}, \ldots, a_{j} also optimally arranged.
- If we count tree levels starting with 1 to make the comparison numbers equal the keys' levels, the following recurrence relation is obtained:

$$
\begin{aligned}
C(i, j)= & \min _{i \leq k \leq j}\left\{p_{k} \cdot 1+\sum_{s=i}^{k-1} p_{s} \cdot\left(\text { level of } a_{s} \text { in } T_{i}^{k-1}+1\right)\right. \\
& \left.+\sum_{s=k+1}^{j} p_{s} \cdot\left(\text { level of } a_{s} \text { in } T_{k+1}^{j}+1\right)\right\} \\
= & \min _{i \leq k \leq j}\left\{\sum_{s=i}^{k-1} p_{s} \cdot \text { level of } a_{s} \text { in } T_{i}^{k-1}+\sum_{s=k+1}^{j} p_{s} \cdot \text { level of } a_{s} \text { in } T_{k+1}^{j}+\sum_{s=i}^{j} p_{s}\right\} \\
= & \min _{i \leq k \leq j}\{C(i, k-1)+C(k+1, j)\}+\sum_{s=i}^{j} p_{s} .
\end{aligned}
$$

- The recurrence relation is

$$
C(i, j)=\min _{i \leq k \leq j}\{C(i, k-1)+C(k+1, j)\}+\sum_{s=i}^{j} p_{s} \quad \text { for } 1 \leq i \leq j \leq n
$$

- Here $\mathrm{C}(\mathrm{i}, \mathrm{i}-1)=0$ for $1 \leq \mathrm{i} \leq \mathrm{n}+1$ [represents empty tree] and

$$
\mathrm{C}(\mathrm{i}, \mathrm{i})=\mathrm{p}_{\mathrm{i}}, \text { for } \mathrm{l} \leq \mathrm{i} \leq \mathrm{n}[\text { represents an one node tree }],
$$

- The algorithm computes $\mathrm{C}(1, \mathrm{n})$, the average number of comparisons for successful searches in the optimal binary tree.
- To get the optimal tree, another two-dimensional table to record the value of k for which it is minimum.

EXAMPLE

Construct an optimal binary search tree for the given set of keys

key	A	B	C	D
probability	0.1	0.2	0.4	0.3

Initial tables will be: here $C(i, i-1)=0$ for $1 \leq i \leq n+1 \& C(i, i)=p_{i}$

	0	1	2	3	4
1	0	0.1			
2		0	0.2		
3			0	0.4	
4				0	0.3
5					0

	0	1	2	3	4
1		1			
2			2		
3				3	
4					4
5					

$$
\begin{aligned}
\mathrm{C}(1,2) & =\min \left\{\begin{array}{l}
\text { for } \mathrm{k}=1: \mathrm{C}[1,0]+\mathrm{C}[2,2]+\sum_{s=1}^{2} p_{s} \\
\text { for } \mathrm{k}=2: \mathrm{C}[1,1]+\mathrm{C}[3,2]+\sum_{s=1}^{2} p_{s}
\end{array}\right. \\
& =\min [0+0.2+0.3,0.1+0+0.3] \\
& =\min [0.5,0.4] \\
& =0.4
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{C}(2,3) & =\min \left\{\begin{array}{l}
\text { for } \mathrm{k}=2: \mathrm{C}[2,1]+\mathrm{C}[3,3]+\sum_{s=2}^{3} p_{s} \\
\text { for } \mathrm{k}=3: \mathrm{C}[2,2]+\mathrm{C}[4,3]+\sum_{s=2}^{3} p_{s}
\end{array}\right. \\
& =\min [0+0.4+0.6,0.2+0+0.6] \\
& =\min [1.0,0.8] \\
& =0.8
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{C}(3,4) & =\min \left\{\begin{array}{l}
\text { for } \mathrm{k}=3: \mathrm{C}[3,2]+\mathrm{C}[4,4]+\sum_{s=3}^{4} p_{s} \\
\text { for } \mathrm{k}=4: \mathrm{C}[3,3]+\mathrm{C}[5,4]+\sum_{s=3}^{4} p_{s}
\end{array}\right. \\
& =\min [0+0.3+0.7,0.4+0+0.7] \\
& =\min [1.0,1.1] \\
& =1.0
\end{aligned}
$$

Now the tables becomes

	0	1	2	3	4
1	0	0.1	0.4		
2		0	0.2	0.8	
3			0	0.4	1.0
4				0	0.3
5					0

	0	1	2	3	4
1		1	2		
2			2	3	
3				3	3
4					4
5					

$$
\begin{aligned}
\mathrm{C}(1,3) & =\min \left\{\begin{array}{l}
\text { for } \mathrm{k}=1: \mathrm{C}[1,0]+\mathrm{C}[2,3]+\sum_{s=1}^{3} p_{s} \\
\text { for } \mathrm{k}=2: \mathrm{C}[1,1]+\mathrm{C}[3,3]+\sum_{s=1}^{3} p_{s}
\end{array}\right. \\
& =\min [0+0.8+0.7,0.1+0.4+0.7,0.4+0+0.7] \\
& =\min [1.5,1.2,1.1] \\
& =1.1
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{C}(2,4) & =\min \left\{\begin{array}{l}
\text { for } \mathrm{k}=2: \mathrm{C}[2,1]+\mathrm{C}[3,4]+\sum_{s=2}^{4} p_{s} \\
\text { for } \mathrm{k}=3: \mathrm{C}[2,2]+\mathrm{C}[4,4]+\sum_{s=2}^{4} p_{s} \\
\text { for } \mathrm{k}=4: \mathrm{C}[2,3]+\mathrm{C}[5,4]+\sum_{s=2}^{4} p_{s}
\end{array}\right. \\
& =\min [0+1.0+0.9,0.2+0.3+0.9,0.8+0+0.9] \\
& =\min [1.9,1.4,1.7] \\
& =1.4
\end{aligned}
$$

Now the tables becomes

	0	1	2	3	4
1	0	0.1	0.4	1.1	
2		0	0.2	0.8	1.4
3			0	0.4	1.0
4				0	0.3
5					0

	0	1	2	3	4
1		1	2	3	
2			2	3	3
3				3	3
4					4
5					

$$
\begin{aligned}
\mathrm{C}(1,4) & =\min \left\{\begin{array}{l}
\text { for } \mathrm{k}=1: \mathrm{C}[1,0]+\mathrm{C}[2,4]+\sum_{s=1}^{4} p_{s} \\
\text { for } \mathrm{k}=2: \mathrm{C}[1,1]+\mathrm{C}[3,4]+\sum_{s=1}^{4} p_{s} \\
\text { for } \mathrm{k}=3: \mathrm{C}[1,2]+\mathrm{C}[4,4]+\sum_{s=1}^{4} p_{s} \\
\text { for } \mathrm{k}=4: \mathrm{C}[1,3]+\mathrm{C}[5,4]+\sum_{s=1}^{4} p_{s}
\end{array}\right. \\
& =\min [0+1.4+1.0,0.1+1.0+1.0,0.4+0.3+1.0,1.1+0+1.0] \\
& =\min [2.4,2.1,1.7,2.1] \\
& =1.7
\end{aligned}
$$

Now the tables becomes

	0	1	2	3	4
1	0	0.1	0.4	1.1	1.7
2		0	0.2	0.8	1.4
3			0	0.4	1.0
4				0	0.3
5					0

	0	1	2	3	4
1		1	2	3	3
2			2	3	3
3				3	3
4					4
5					

- Thus, the average number of key comparisons in the optimal tree is equal to 1.7.
- Since $\mathrm{R}(1,4)=3$, the root of the optimal tree contains the third key, i.e., C.
- Since its a binary search tree, Its left subtree is made up of keys A and B, and its right subtree contains just the key D
- To find the specific structure of these subtrees,
- In the root table since $R(1,2)=2$, the root of the optimal tree containing A and B is B, with A being its left child.
- Since $\mathrm{R}(4,4)=4$, the root of this one-node optimal tree is its only key D .
- The below figure represents the optimal tree

The pseudocode of this algorithm is given below

ALGORITHM OptimalBST($P[1 . . n]$)

//Finds an optimal binary search tree by dynamic programming
$/ /$ Input: An array $P[1 . . n]$ of search probabilities for a sorted list of n keys
//Output: Average number of comparisons in successful searches in the
// optimal BST and table R of subtrees' roots in the optimal BST
for $i \leftarrow 1$ to n do
$C[i, i-1] \leftarrow 0$
$C[i, i] \leftarrow P[i]$
$R[i, i] \leftarrow i$
$C[n+1, n] \leftarrow 0$
for $d \leftarrow 1$ to $n-1$ do //diagonal count
for $i \leftarrow 1$ to $n-d$ do
$j \leftarrow i+d$
minval $\leftarrow \infty$
for $k \leftarrow i$ to j do
if $C[i, k-1]+C[k+1, j]<$ minval
minval $\leftarrow C[i, k-1]+C[k+1, j] ; \quad k \min \leftarrow k$
$R[i, j] \leftarrow k m i n$
sum $\leftarrow P[i] ; \quad$ for $s \leftarrow i+1$ to j do sum \leftarrow sum $+P[s]$
$C[i, j] \leftarrow$ minval + sum
return $C[1, n], R$
The time efficiency of this algorithm is $\Theta\left(n^{3}\right)$

