
OPTIMAL BINARY SEARCH TREES 

 A Binary Search Tree is one of the most important data structures which contain a set of 

elements with the operations of searching, insertion, and deletion. 

 An Optimal Binary Search Tree is the one for which the average number of 

comparisons in a search is the smallest possible, if the probability of searching each 

elements is given. 

 Consider four keys A, B, C, and D to be searched for with probabilities 0.1, 0.2, 0.4, and 

0.3, respectively.  

 The below figure depicts two out of 14 possible binary search trees containing these keys. 

 

  The average number of comparisons in a successful search in the first of these trees is  

0.1 . 1+ 0.2 . 2 + 0.4 .3+ 0.3 . 4 = 2.9,  

and for the second one it is  

0.1 . 2 + 0.2 . 1+ 0.4 . 2 + 0.3 . 3= 2.1. 

 Neither of these two trees is, in fact, optimal. 

 The total number of binary search trees with n keys is equal to the nth Catalan number, 

 

 Let a1, . . . , an be distinct keys ordered from the smallest to the largest and let p1, . . . , pn 

be the probabilities of searching for them.  

 Let C(i, j) be the smallest average number of comparisons made in a successful search in 

a binary search tree Ti
j
. 

 Suppose the root contains key ak, the left subtree Ti
k−1 contains keys ai, . . . , ak−1 optimally 

arranged, and the right subtree Tj
k+1

 contains keys ak+1, . . . , aj also optimally arranged. 

 If we count tree levels starting with 1 to make the comparison numbers equal the keys’ 

levels, the following recurrence relation is obtained: 



 

 The recurrence relation is 

 

 Here C(i, i − 1) = 0 for 1 ≤ i ≤ n+1 [represents empty tree] and  

        C(i, i) = pi, for 1 ≤ i ≤ n [represents an one node tree], 

 The algorithm computes C(1, n), the average number of comparisons for successful 

searches in the optimal binary tree.  

 To get the optimal tree, another two-dimensional table to record the value of k for which 

it is minimum.  

EXAMPLE 

Construct an optimal binary search tree for the given set of keys  

key A B C D 

probability 0.1 0.2 0.4 0.3 

 

 Initial tables will be: here  C(i, i − 1) = 0 for 1 ≤ i ≤ n+1 & C(i, i) = pi                                      

              

 

 

 

 

 

 0 1 2 3 4 

1 0 0.1    

2  0 0.2   

3   0 0.4  

4    0 0.3 

5     0 

 0 1 2 3 4 

1  1    

2   2   

3    3  

4     4 

5      



C(1,2)  = min 
for k =  1: C[1,0]  +  C[2,2]  +  𝑝𝑠 

2
𝑠=1

for k =  2: C[1,1]  +  C[3,2]  +   𝑝𝑠
2
𝑠=1

  

 = min[0 + 0.2 + 0.3, 0.1 + 0 + 0.3] 

 = min[0.5, 0.4] 

 = 0.4 

 

C(2,3)  = min 
for k =  2: C[2,1]  +  C[3,3]  +  𝑝𝑠 

3
𝑠=2

for k =  3: C[2,2]  +  C[4,3]  +   𝑝𝑠
3
𝑠=2

  

 = min[0 + 0.4 + 0.6, 0.2 + 0 + 0.6] 

 = min[1.0, 0.8] 

 = 0.8 

 

C(3,4)  = min 
for k =  3: C[3,2]  +  C[4,4]  +   𝑝𝑠 

4
𝑠=3

for k =  4: C[3,3]  +  C[5,4]  +   𝑝𝑠
4
𝑠=3

  

 = min[0 + 0.3 + 0.7, 0.4 + 0 + 0.7] 

 = min[1.0, 1.1] 

 = 1.0 

 

Now the tables becomes 

              

 

 

 

 

 

 

 

 0 1 2 3 4 

1 0 0.1 0.4   

2  0 0.2 0.8  

3   0 0.4 1.0 

4    0 0.3 

5     0 

 0 1 2 3 4 

1  1 2   

2   2 3  

3    3 3 

4     4 

5      



C(1,3)  = min 

for k =  1: C[1,0]  +  C[2,3]  +   𝑝𝑠 
3
𝑠=1

for k =  2: C[1,1]  +  C[3,3]  +   𝑝𝑠 
3
𝑠=1

for k =  3: C[1,2]  +  C[4,3]  +   𝑝𝑠
3
𝑠=1

  

 = min[0 + 0.8 + 0.7, 0.1 + 0.4 + 0.7, 0.4 + 0 + 0.7] 

 = min[1.5, 1.2, 1.1] 

 = 1.1 

C(2,4)  = min 

for k =  2: C[2,1]  +  C[3,4]  +   𝑝𝑠 
4
𝑠=2

for k =  3: C[2,2]  +  C[4,4]  +   𝑝𝑠 
4
𝑠=2

for k =  4: C[2,3]  +  C[5,4]  +   𝑝𝑠
4
𝑠=2

  

 = min[0 + 1.0 + 0.9, 0.2 + 0.3 + 0.9, 0.8 + 0 + 0.9] 

 = min[1.9, 1.4, 1.7] 

 = 1.4 

Now the tables becomes 

              

 

 

 

 

 

C(1,4)  = min

 
 
 

 
 for k =  1: C 1,0 +  C 2,4 +   𝑝𝑠 

4
𝑠=1

for k =  2: C 1,1 +  C 3,4 +   𝑝𝑠 
4
𝑠=1

for k =  3: C 1,2 +  C 4,4 +   𝑝𝑠 
4
𝑠=1

for k =  4: C 1,3 +  C 5,4 +   𝑝𝑠
4
𝑠=1

  

 = min[0 +1.4 +1.0, 0.1 + 1.0 + 1.0, 0.4 + 0.3 + 1.0, 1.1 + 0 + 1.0] 

 = min[2.4, 2.1, 1.7, 2.1] 

 = 1.7 

 

 

 

 

 0 1 2 3 4 

1 0 0.1 0.4 1.1  

2  0 0.2 0.8 1.4 

3   0 0.4 1.0 

4    0 0.3 

5     0 

 0 1 2 3 4 

1  1 2 3  

2   2 3 3 

3    3 3 

4     4 

5      



Now the tables becomes 

              

 

 

 

 

 

 Thus, the average number of key comparisons in the optimal tree is equal to 1.7. 

 Since R(1, 4) = 3, the root of the optimal tree contains the third key, i.e., C.  

 Since its a binary search tree, Its left subtree is made up of keys A and B, and its right 

subtree contains just the key D 

 To find the specific structure of these subtrees, 

 In the root table since R(1, 2) = 2, the root of the optimal tree containing A and B is B, 

with A being its left child. 

  Since R(4, 4) = 4, the root of this one-node optimal tree is its only key D.  

 The below figure represents the optimal tree  

                                   

The pseudocode of this algorithm is given below  

 

 

 

 

 

 

 

 

 

 0 1 2 3 4 

1 0 0.1 0.4 1.1 1.7 

2  0 0.2 0.8 1.4 

3   0 0.4 1.0 

4    0 0.3 

5     0 

 0 1 2 3 4 

1  1 2 3 3 

2   2 3 3 

3    3 3 

4     4 

5      

C 

A 

D B 



 

The time efficiency of this algorithm is  

 


