
OPTIMAL BINARY SEARCH TREES 

 A Binary Search Tree is one of the most important data structures which contain a set of 

elements with the operations of searching, insertion, and deletion. 

 An Optimal Binary Search Tree is the one for which the average number of 

comparisons in a search is the smallest possible, if the probability of searching each 

elements is given. 

 Consider four keys A, B, C, and D to be searched for with probabilities 0.1, 0.2, 0.4, and 

0.3, respectively.  

 The below figure depicts two out of 14 possible binary search trees containing these keys. 

 

  The average number of comparisons in a successful search in the first of these trees is  

0.1 . 1+ 0.2 . 2 + 0.4 .3+ 0.3 . 4 = 2.9,  

and for the second one it is  

0.1 . 2 + 0.2 . 1+ 0.4 . 2 + 0.3 . 3= 2.1. 

 Neither of these two trees is, in fact, optimal. 

 The total number of binary search trees with n keys is equal to the nth Catalan number, 

 

 Let a1, . . . , an be distinct keys ordered from the smallest to the largest and let p1, . . . , pn 

be the probabilities of searching for them.  

 Let C(i, j) be the smallest average number of comparisons made in a successful search in 

a binary search tree Ti
j
. 

 Suppose the root contains key ak, the left subtree Ti
k−1 contains keys ai, . . . , ak−1 optimally 

arranged, and the right subtree Tj
k+1

 contains keys ak+1, . . . , aj also optimally arranged. 

 If we count tree levels starting with 1 to make the comparison numbers equal the keys’ 

levels, the following recurrence relation is obtained: 



 

 The recurrence relation is 

 

 Here C(i, i − 1) = 0 for 1 ≤ i ≤ n+1 [represents empty tree] and  

        C(i, i) = pi, for 1 ≤ i ≤ n [represents an one node tree], 

 The algorithm computes C(1, n), the average number of comparisons for successful 

searches in the optimal binary tree.  

 To get the optimal tree, another two-dimensional table to record the value of k for which 

it is minimum.  

EXAMPLE 

Construct an optimal binary search tree for the given set of keys  

key A B C D 

probability 0.1 0.2 0.4 0.3 

 

 Initial tables will be: here  C(i, i − 1) = 0 for 1 ≤ i ≤ n+1 & C(i, i) = pi                                      

              

 

 

 

 

 

 0 1 2 3 4 

1 0 0.1    

2  0 0.2   

3   0 0.4  

4    0 0.3 

5     0 

 0 1 2 3 4 

1  1    

2   2   

3    3  

4     4 

5      



C(1,2)  = min 
for k =  1: C[1,0]  +  C[2,2]  +  𝑝𝑠 

2
𝑠=1

for k =  2: C[1,1]  +  C[3,2]  +   𝑝𝑠
2
𝑠=1

  

 = min[0 + 0.2 + 0.3, 0.1 + 0 + 0.3] 

 = min[0.5, 0.4] 

 = 0.4 

 

C(2,3)  = min 
for k =  2: C[2,1]  +  C[3,3]  +  𝑝𝑠 

3
𝑠=2

for k =  3: C[2,2]  +  C[4,3]  +   𝑝𝑠
3
𝑠=2

  

 = min[0 + 0.4 + 0.6, 0.2 + 0 + 0.6] 

 = min[1.0, 0.8] 

 = 0.8 

 

C(3,4)  = min 
for k =  3: C[3,2]  +  C[4,4]  +   𝑝𝑠 

4
𝑠=3

for k =  4: C[3,3]  +  C[5,4]  +   𝑝𝑠
4
𝑠=3

  

 = min[0 + 0.3 + 0.7, 0.4 + 0 + 0.7] 

 = min[1.0, 1.1] 

 = 1.0 

 

Now the tables becomes 

              

 

 

 

 

 

 

 

 0 1 2 3 4 

1 0 0.1 0.4   

2  0 0.2 0.8  

3   0 0.4 1.0 

4    0 0.3 

5     0 

 0 1 2 3 4 

1  1 2   

2   2 3  

3    3 3 

4     4 

5      



C(1,3)  = min 

for k =  1: C[1,0]  +  C[2,3]  +   𝑝𝑠 
3
𝑠=1

for k =  2: C[1,1]  +  C[3,3]  +   𝑝𝑠 
3
𝑠=1

for k =  3: C[1,2]  +  C[4,3]  +   𝑝𝑠
3
𝑠=1

  

 = min[0 + 0.8 + 0.7, 0.1 + 0.4 + 0.7, 0.4 + 0 + 0.7] 

 = min[1.5, 1.2, 1.1] 

 = 1.1 

C(2,4)  = min 

for k =  2: C[2,1]  +  C[3,4]  +   𝑝𝑠 
4
𝑠=2

for k =  3: C[2,2]  +  C[4,4]  +   𝑝𝑠 
4
𝑠=2

for k =  4: C[2,3]  +  C[5,4]  +   𝑝𝑠
4
𝑠=2

  

 = min[0 + 1.0 + 0.9, 0.2 + 0.3 + 0.9, 0.8 + 0 + 0.9] 

 = min[1.9, 1.4, 1.7] 

 = 1.4 

Now the tables becomes 

              

 

 

 

 

 

C(1,4)  = min

 
 
 

 
 for k =  1: C 1,0 +  C 2,4 +   𝑝𝑠 

4
𝑠=1

for k =  2: C 1,1 +  C 3,4 +   𝑝𝑠 
4
𝑠=1

for k =  3: C 1,2 +  C 4,4 +   𝑝𝑠 
4
𝑠=1

for k =  4: C 1,3 +  C 5,4 +   𝑝𝑠
4
𝑠=1

  

 = min[0 +1.4 +1.0, 0.1 + 1.0 + 1.0, 0.4 + 0.3 + 1.0, 1.1 + 0 + 1.0] 

 = min[2.4, 2.1, 1.7, 2.1] 

 = 1.7 

 

 

 

 

 0 1 2 3 4 

1 0 0.1 0.4 1.1  

2  0 0.2 0.8 1.4 

3   0 0.4 1.0 

4    0 0.3 

5     0 

 0 1 2 3 4 

1  1 2 3  

2   2 3 3 

3    3 3 

4     4 

5      



Now the tables becomes 

              

 

 

 

 

 

 Thus, the average number of key comparisons in the optimal tree is equal to 1.7. 

 Since R(1, 4) = 3, the root of the optimal tree contains the third key, i.e., C.  

 Since its a binary search tree, Its left subtree is made up of keys A and B, and its right 

subtree contains just the key D 

 To find the specific structure of these subtrees, 

 In the root table since R(1, 2) = 2, the root of the optimal tree containing A and B is B, 

with A being its left child. 

  Since R(4, 4) = 4, the root of this one-node optimal tree is its only key D.  

 The below figure represents the optimal tree  

                                   

The pseudocode of this algorithm is given below  

 

 

 

 

 

 

 

 

 

 0 1 2 3 4 

1 0 0.1 0.4 1.1 1.7 

2  0 0.2 0.8 1.4 

3   0 0.4 1.0 

4    0 0.3 

5     0 

 0 1 2 3 4 

1  1 2 3 3 

2   2 3 3 

3    3 3 

4     4 

5      

C 

A 

D B 



 

The time efficiency of this algorithm is  

 


