OPTIMAL BINARY SEARCH TREES

A Binary Search Tree is one of the most important data structures which contain a set of
elements with the operations of searching, insertion, and deletion.

An Optimal Binary Search Tree is the one for which the average number of
comparisons in a search is the smallest possible, if the probability of searching each
elements is given.

Consider four keys A, B, C, and D to be searched for with probabilities 0.1, 0.2, 0.4, and
0.3, respectively.

The below figure depicts two out of 14 possible binary search trees containing these keys.

A (B)

N =
'\E& D)
—
L)

The average number of comparisons in a successful search in the first of these trees is
01.1+02.2+04.3+03.4=209,

and for the second one it is
01.2+0.2.1+04.2+03.3=2.1.

Neither of these two trees is, in fact, optimal.

The total number of binary search trees with n keys is equal to the nth Catalan number,

5
c(n) = l (HH) forn =0, c(0)=1,

n

Let ay, . .., a, be distinct keys ordered from the smallest to the largest and let p1, . . ., pn
be the probabilities of searching for them.

Let C(i, j) be the smallest average number of comparisons made in a successful search in
a binary search tree T.

Suppose the root contains key ay, the left subtree T contains keys a;, . . . , a1 optimally

arranged, and the right subtree T;***

contains keys ax+1, . . . , 8 also optimally arranged.
If we count tree levels starting with 1 to make the comparison numbers equal the keys’

levels, the following recurrence relation is obtained:

k—1
C(i, j)= min {p; - 1 . (level of a, in TF"1 41
(i, /)= min (py +§m (agin T"H 1)
JII -
+ Z ps - (levelof ag in T/, + 1))
s=k+1
k—1 J . i
= fg}(i}:lj{z p, - level of a; in Tf.k_] + Z ps - level of a; in Tkj+1 + Z Ps)
T =k+1 §=i

5=i 5

/
=mn{Ci,k—1D+Ck+1,)} + y
min (CGi k=1 +Ck+1,) Z:jp

e The recurrence relation is

J
C(i. j)= min {Ci. k=1 +Clk+1.)} + Y py forl<i<j<n.
§=i
e HereC(i,i—1) =0 for 1 <i<n+l [represents empty tree] and
C(i, 1) = pj, for 1 <i<n [represents an one node tree],
e The algorithm computes C(1, n), the average number of comparisons for successful
searches in the optimal binary tree.
e To get the optimal tree, another two-dimensional table to record the value of k for which
it is minimum.
EXAMPLE
Construct an optimal binary search tree for the given set of keys
key A |[B |[C |D
probability | 0.1 | 0.2 [0.4 | 0.3

Initial tables will be: here C(i,i—1)=0for 1 <i<n+1 & C(i, i) = p;

oO|1(2]| 3|4 o123] 4
0 (01 1
0 |02

C(1,2) = min{

=min[0+ 0.2 +0.3,0.1 + 0 + 0.3]

fork = 1:C[1,0] + C[2,2] + X2, p,
2:C[1,1] + C[3,2] + X2 ,p,

fork =

=min[0.5, 0.4]

=04

C(2,3) = min{

=min[0+0.4+0.6,0.2+0+0.6]

fork = 2:C[2,1] + C[3,3] + X3, p,
3:C[2,2] + C[4,3] + X3, ps

fork =

=min[1.0, 0.8]

=0.8

C(3.4) = min{

=min[0+0.3+0.7,04+0+0.7]

fork = 3:C[3,2] + C[4,4] + Y% sp,
fork = 4:C[3,3] + C[5,4] + X* s p;

=min[1.0, 1.1]

=10

Now the tables becomes

o1 2|3]| 4
1|10 (01]04
2 0 10208
3 0 |04]10
4 0 103
5 0

| W |IDN|PF

fork = 1: C[1,0] + C[2,3] + X3_,p,
C(1,3) =min{fork = 2:C[1,1] + C[3,3] + X3_; ps
fork = 3:C[1,2] + C[4,3] + X3_,p,

=min[0+0.8+0.7,0.1+0.4 +0.7,04+0+0.7]
= min[1.5, 1.2, 1.1]
=11

fork = 2:C[2,1] + C[3,4] + X%, p,
C(2,4) =min{fork = 3:C[2,2] + C[4,4] + Xt ,p,
fork = 4:C[2,3] + C[5,4] + X%, p,

= min[0 + 1.0+ 0.9,0.2 + 0.3+ 0.9, 0.8 + 0 + 0.9]
= min[1.9, 1.4, 1.7]
=14

Now the tables becomes

01 |2]|3]|4 0| 1]2]3
110 (01|04]11 1 1123
2 0 [02/08]1.4 2 2 | 3
3 0 [04]1.0 3 3
4 0 (03 4
5 0 5
(fork = 1:C[1,0] + C[2,4] + Y%, ps
. |fork = 2:C[1,1] + C[3,4] + X! p
C(14 :mn! s=1bs
(LA) =miny ik = 3:C[L2] + C[44] + T p.
fork = 4:C[1,3] + C[5,4] + X* ;| p,

=min[0 +1.4+1.0,01+10+10,04+0.3+1.0,1.1+0+1.0]
=min[2.4,2.1, 1.7, 2.1]

=17

Now the tables becomes

o|1(2|3 |4 o123] 4
110 1]01({04 11|17 1 11233
2 0 (02/08|14 2 2 | 3|3
3 0 10410 3 3] 3
4 0 |03 4 4
5 0 5

e Thus, the average number of key comparisons in the optimal tree is equal to 1.7.

e Since R(1, 4) = 3, the root of the optimal tree contains the third key, i.e., C.

e Since its a binary search tree, Its left subtree is made up of keys A and B, and its right
subtree contains just the key D

e To find the specific structure of these subtrees,

e In the root table since R(1, 2) = 2, the root of the optimal tree containing A and B is B,
with A being its left child.

e Since R(4, 4) = 4, the root of this one-node optimal tree is its only key D.

e The below figure represents the optimal tree

The pseudocode of this algorithm is given below

ALGORITHM OptimalBST(P[1..n])

//Finds an optimal binary search tree by dynamic programming
[Input: An array P[1..n] of search probabilities for a sorted list of n keys
[IOutput: Average number of comparisons in successful searches in the

I optimal BST and table R of subtrees’ roots in the optimal BST
fori < 1tondo

Cli,i —1]«0

Cli, i] < PJi]

R[i,i] i
Cln+1,n]<0

ford < 1ton —1do //diagonal count
fori < 1ton —ddo
j—i+d
minval < oo
fork < i to j do
it Cli, k= 1]+ Clk + 1, j] < minval
minval < Cli,k — 1]+ C[k + 1, j: kmin <k
R[i, j] < kmin
sum < P[i]; fors < i+ 1to j do sum < sum + P|s]
Cli, j] < minval + sum
return C[1, n], R

The time efficiency of this algorithm is e’

