
OPTIMAL BINARY SEARCH TREES

 A Binary Search Tree is one of the most important data structures which contain a set of

elements with the operations of searching, insertion, and deletion.

 An Optimal Binary Search Tree is the one for which the average number of

comparisons in a search is the smallest possible, if the probability of searching each

elements is given.

 Consider four keys A, B, C, and D to be searched for with probabilities 0.1, 0.2, 0.4, and

0.3, respectively.

 The below figure depicts two out of 14 possible binary search trees containing these keys.

 The average number of comparisons in a successful search in the first of these trees is

0.1 . 1+ 0.2 . 2 + 0.4 .3+ 0.3 . 4 = 2.9,

and for the second one it is

0.1 . 2 + 0.2 . 1+ 0.4 . 2 + 0.3 . 3= 2.1.

 Neither of these two trees is, in fact, optimal.

 The total number of binary search trees with n keys is equal to the nth Catalan number,

 Let a1, . . . , an be distinct keys ordered from the smallest to the largest and let p1, . . . , pn

be the probabilities of searching for them.

 Let C(i, j) be the smallest average number of comparisons made in a successful search in

a binary search tree Ti
j
.

 Suppose the root contains key ak, the left subtree Ti
k−1 contains keys ai, . . . , ak−1 optimally

arranged, and the right subtree Tj
k+1

 contains keys ak+1, . . . , aj also optimally arranged.

 If we count tree levels starting with 1 to make the comparison numbers equal the keys’

levels, the following recurrence relation is obtained:

 The recurrence relation is

 Here C(i, i − 1) = 0 for 1 ≤ i ≤ n+1 [represents empty tree] and

 C(i, i) = pi, for 1 ≤ i ≤ n [represents an one node tree],

 The algorithm computes C(1, n), the average number of comparisons for successful

searches in the optimal binary tree.

 To get the optimal tree, another two-dimensional table to record the value of k for which

it is minimum.

EXAMPLE

Construct an optimal binary search tree for the given set of keys

key A B C D

probability 0.1 0.2 0.4 0.3

 Initial tables will be: here C(i, i − 1) = 0 for 1 ≤ i ≤ n+1 & C(i, i) = pi

 0 1 2 3 4

1 0 0.1

2 0 0.2

3 0 0.4

4 0 0.3

5 0

 0 1 2 3 4

1 1

2 2

3 3

4 4

5

C(1,2) = min
for k = 1: C[1,0] + C[2,2] + 𝑝𝑠

2
𝑠=1

for k = 2: C[1,1] + C[3,2] + 𝑝𝑠
2
𝑠=1

 = min[0 + 0.2 + 0.3, 0.1 + 0 + 0.3]

 = min[0.5, 0.4]

 = 0.4

C(2,3) = min
for k = 2: C[2,1] + C[3,3] + 𝑝𝑠

3
𝑠=2

for k = 3: C[2,2] + C[4,3] + 𝑝𝑠
3
𝑠=2

 = min[0 + 0.4 + 0.6, 0.2 + 0 + 0.6]

 = min[1.0, 0.8]

 = 0.8

C(3,4) = min
for k = 3: C[3,2] + C[4,4] + 𝑝𝑠

4
𝑠=3

for k = 4: C[3,3] + C[5,4] + 𝑝𝑠
4
𝑠=3

 = min[0 + 0.3 + 0.7, 0.4 + 0 + 0.7]

 = min[1.0, 1.1]

 = 1.0

Now the tables becomes

 0 1 2 3 4

1 0 0.1 0.4

2 0 0.2 0.8

3 0 0.4 1.0

4 0 0.3

5 0

 0 1 2 3 4

1 1 2

2 2 3

3 3 3

4 4

5

C(1,3) = min

for k = 1: C[1,0] + C[2,3] + 𝑝𝑠
3
𝑠=1

for k = 2: C[1,1] + C[3,3] + 𝑝𝑠
3
𝑠=1

for k = 3: C[1,2] + C[4,3] + 𝑝𝑠
3
𝑠=1

 = min[0 + 0.8 + 0.7, 0.1 + 0.4 + 0.7, 0.4 + 0 + 0.7]

 = min[1.5, 1.2, 1.1]

 = 1.1

C(2,4) = min

for k = 2: C[2,1] + C[3,4] + 𝑝𝑠
4
𝑠=2

for k = 3: C[2,2] + C[4,4] + 𝑝𝑠
4
𝑠=2

for k = 4: C[2,3] + C[5,4] + 𝑝𝑠
4
𝑠=2

 = min[0 + 1.0 + 0.9, 0.2 + 0.3 + 0.9, 0.8 + 0 + 0.9]

 = min[1.9, 1.4, 1.7]

 = 1.4

Now the tables becomes

C(1,4) = min

 for k = 1: C 1,0 + C 2,4 + 𝑝𝑠

4
𝑠=1

for k = 2: C 1,1 + C 3,4 + 𝑝𝑠
4
𝑠=1

for k = 3: C 1,2 + C 4,4 + 𝑝𝑠
4
𝑠=1

for k = 4: C 1,3 + C 5,4 + 𝑝𝑠
4
𝑠=1

 = min[0 +1.4 +1.0, 0.1 + 1.0 + 1.0, 0.4 + 0.3 + 1.0, 1.1 + 0 + 1.0]

 = min[2.4, 2.1, 1.7, 2.1]

 = 1.7

 0 1 2 3 4

1 0 0.1 0.4 1.1

2 0 0.2 0.8 1.4

3 0 0.4 1.0

4 0 0.3

5 0

 0 1 2 3 4

1 1 2 3

2 2 3 3

3 3 3

4 4

5

Now the tables becomes

 Thus, the average number of key comparisons in the optimal tree is equal to 1.7.

 Since R(1, 4) = 3, the root of the optimal tree contains the third key, i.e., C.

 Since its a binary search tree, Its left subtree is made up of keys A and B, and its right

subtree contains just the key D

 To find the specific structure of these subtrees,

 In the root table since R(1, 2) = 2, the root of the optimal tree containing A and B is B,

with A being its left child.

 Since R(4, 4) = 4, the root of this one-node optimal tree is its only key D.

 The below figure represents the optimal tree

The pseudocode of this algorithm is given below

 0 1 2 3 4

1 0 0.1 0.4 1.1 1.7

2 0 0.2 0.8 1.4

3 0 0.4 1.0

4 0 0.3

5 0

 0 1 2 3 4

1 1 2 3 3

2 2 3 3

3 3 3

4 4

5

C

A

D B

The time efficiency of this algorithm is

